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We consider a generalized discrete �4 model and demonstrate that it can support exact moving kink solu-
tions in the form of tanh with an arbitrarily large velocity. The constructed exact moving solutions are
dependent on the specific value of the propagation velocity. We demonstrate that in this class of models, given
a specific velocity, the problem of finding the exact moving solution is integrable. Namely, this problem
originally expressed as a three-point map can be reduced to a two-point map, from which the exact moving
solutions can be derived iteratively. It was also found that these high-speed kinks can be stable and robust
against perturbations introduced in the initial conditions.
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I. INTRODUCTION

Solitary waves play an important role in a great variety of
applications because they are robust against perturbations
and they can transport various physical quantities such as
mass, energy, momentum, electrical charge, and also infor-
mation �1,2�. Many popular continuum nonlinear equations
support traveling solutions, but for their discrete analogs the
existence of traveling solutions was not systematically stud-
ied until recently. Previously, only a few integrable lattices
were known to support moving solitons, e.g., the Toda lattice
�3� and the Ablowitz-Ladik lattice �4�, the former being the
discrete version of the Korteweg-de Vries �KdV� equation
and the latter of the nonlinear Schrödinger �NLS� equation.
While integrable lattices of other key continuum models are
also available �5,6�, these integrable situations are still rather
exceptional and typically not directly relevant to experimen-
tal settings. On the other hand, recently several wide classes
of discrete models supporting translationally invariant �TI�
static or stationary solutions have been discovered and in-
vestigated for the discrete Klein-Gordon equation �7–19�
�see also Ref. �21�� and the discrete NLS equation
�20,22–26�. Static solitary waves in such lattices possess the
translational Goldstone mode �10,18–20,22,23�, which
means that the solitary waves moving with vanishing veloc-
ity can be regarded as the exact solutions to these discrete
equations �although there are issues for finite but small ve-
locities as explained, e.g., in �27,28��. Moving solutions
propagating along a lattice at finite velocity have also been
found analytically in �22,23� and with the help of specially
tuned numerical approaches in �25,27–33�. Traveling bright
solitons in the NLS lattice model with saturable nonlinearity
are also very interesting �28,34,35�. For this model the exis-
tence of soliton frequencies with vanishing Peierls-Nabarro
energy barrier was demonstrated. It was shown that for the
specific frequencies the static version of the model equation
coincides with that of the integrable Ablowitz-Ladik equa-
tion �35�. This implies in the mapping analysis a possibility
to reduce the three-point map to a two-point map. However,
the studied model equation is not integrable and while the
solitary waves moving with small velocity were numerically

obtained for the specific frequencies, the question about the
existence of solitary waves moving with finite velocities re-
mains open.

The existence of lattices supporting the static TI solutions
and the exact solutions moving with finite velocity poses a
natural question about whether there is a relation between
them. In the present study we answer this question in the
positive, creating a link between these two classes of solu-
tions below.

On the other hand, as regards the solitary wave motion,
another interesting question is the existence of upper bound
for the propagation velocity. In view of Lorentz invariance,
clearly the solitary waves in continuum nonlinear equations
of the Klein-Gordon type have limitations on their propaga-
tion velocity. One of the questions that we examine below is
whether a similar restriction exists in the corresponding dis-
crete models. Since the Lorentz invariance is no longer a
symmetry of the discrete nonlinear systems, strictly speaking
there need not be any restriction on the propagation velocity.
However, naively one would expect that typically the propa-
gation velocity in the discrete nonlinear systems would be
similar to the ones supported by their continuous counter-
parts and not develop supersonic values. Recently, three of
us �23� confirmed this naive expectation in a generalized
discrete NLS equation. A natural question, however, is
whether this always holds true. Although in some case ex-
amples, this has already been addressed �27�, here we ad-
dress this question �and its negative answer� more systemati-
cally in the framework of the recently studied discrete �4

model �19�:

d2�n

dt2 =
1

h2 ��n+1 + �n−1 − 2�n� + ��n − A1�n
3

−
A2

2
�n

2��n+1 + �n−1� −
A3

2
�n��n+1

2 + �n−1
2 �

− A4�n�n+1�n−1 −
A5

2
�n+1�n−1��n+1 + �n−1�

−
A6

2
��n+1

3 + �n−1
3 � , �1�
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with the model parameters satisfying the normalization con-
straint

�
k=1

6

Ak = � . �2�

In Eq. �1�, �n�t� is the unknown function defined on the
lattice xn=hn with the lattice spacing h�0. Without loss of
generality it is sufficient to consider the cases �=1 and −1.

Our results will be displayed as follows. Analytical results
are collected in Sec. II. Examples of the exact moving solu-
tions to Eq. �1� are given in Secs. II A and II C. Then, in Sec.
II D, we derive a continuum analog of Eq. �1� and find its
kink solution. In Sec. II E, the spectrum of the vacuum so-
lution of Eq. �1� is obtained. The relation between the exact
moving solutions and integrable maps is established in Sec.
II F. Section III is devoted to the numerical analysis of sta-
bility and robustness of moving kinks. We present our con-
clusions in Sec. IV.

II. ANALYTICAL RESULTS

Our approach to deriving analytical solutions will be, at
least in the beginning of this section, somewhat similar in
spirit to the inverse method of �36�. That is, we will postulate
the desired solution and will identify the model parameters
for which this solution will be a valid one, as we explain in
more detail below.

A. Moving sn solution

It is easy to show that an exact solution to Eq. �1� is

�n = A sn���hn + hx0 − vt�,m� , �3�

provided the following relations are satisfied:

A5 ns�2h�,m� = − A3 ns�h�,m� ,

A1A2 = − 2m�2v2,

A6 = 0, �4�

2

A2h2 = 2A4 ns�h�,m�ns�2h�,m� + A2 ns2�h�,m�

− A3 cs�h�,m�ds�h�,m� − A5�cs�2h�,m�ds�2h�,m�

− ns2�2h�,m�� , �5�

2 − �h2

A2h2 = A4 ns2�h�,m� + A2 cs�h�,m�ds�h�,m�

− A3 ns2�h�,m� + �1 + m�
�2v2

A2 . �6�

In Eq. �3�, A is the amplitude, v is the propagation velocity,
� is a parameter related to the �inverse� width, x0 is an arbi-
trary position shift, 0�m�1 is the Jacobi elliptic function
�JEF� modulus. Further, ns�x ,m�=1 /sn�x ,m�, cs�x ,m�
=cn�x ,m� /sn�x ,m�, and ds�x ,m�=dn�x ,m� /sn�x ,m�, where

sn�x ,m�, cn�x ,m�, and dn�x ,m� denote standard JEFs.
Solution parameters x0 and m can be chosen arbitrarily.

Equations �4�–�6� establish five constraints from which one
can find the three solution parameters A, v, and �, and two
constraints on model parameters h, �, and Ai �i
=1,2 , . . . ,6�. It is possible to construct some other moving
JEF solutions, for example, moving cn and dn solutions �and
hence hyperbolic pulse solutions of the sech type� but we do
not discuss these here.

B. Exact moving kink solution

In the limit m→1, the above moving sn solution reduces
to the moving kink solution

��x,t� = tanh���hn + hx0 − vt�� , �7�

and the relations �4�–�6� take the simpler form

�2 =
− A1

2v2 ,

2A3 = − A5�1 + T� ,

A6 = 0, �8�

2T

h2 = A4�1 + T� + A2 +
A5

2
�1 + 2T − T2� , �9�

�2 − h2��T
h2 = A4 + A2�1 − T� +

A5

2
�1 + T� − A1T , �10�

where

T = tanh2�h�� . �11�

One can see that the solution is defined only if A1�0.
It is worth pointing out that the static �23� and the moving

JEF as well as hyperbolic soliton solutions exist in this
model in the following seven cases: �i� only A2 nonzero, �ii�
only A4 nonzero, �iii� A3 and A5 nonzero, �iv� A2 and A4
nonzero, �v� A2, A3, and A5 nonzero, �vi� A3, A4, and A5
nonzero, and �vii� as discussed above A2, A3, A4, and A5 all
nonzero. Further, while in the static case, solutions exist only
if A1 ,A6=0, in the moving case solutions exist only if A6
=0, A1�0. It may be noted that these conclusions are valid
for sn, cn, dn as well as tanh, sech solutions. Moreover,
while in the static case, the kink solution exists only if �
�0, the moving kink solution is possible even when ��0.
In fact, it turns out that in cases �i�–�iii� a kink solution with
a large velocity v is possible only if ��0.

While Eqs. �8�–�10� give a general set of restrictions on
the model parameters supporting the exact moving kink, be-
low we extract and analyze three particular cases where the
restrictions attain a very simple and transparent form.

Case I. Only A1, A2, and A4 are nonzero. These param-
eters are subject to the constraint of Eq. �2� and one can take
A1�0 and A4�A1−�+2 /h2 as free parameters. From Eqs.
�8�–�10� and �2� we get

�2 =
− A1

2v2 ,
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A4 =
2

h2 −
� − A1

T
,

A2 = � − A1 − A4. �12�

We note that the kink velocity v can have an arbitrary value
in case ��0.

Indeed, for chosen � and h, one can take any v and then,
using the expressions of Eq. �12�, find subsequently the in-
verse kink width � and the remaining model parameters A4
and A2.

As a subcase of case I, one can take only A1 and A2
nonzero. From Eq. �12� we get

�2 =
− A1

2v2 ,

2T = h2� + 2v2h2�2,

A2 = � − A1. �13�

From here it is clear that the kink solution with large v is
only possible in this case if ��0. Similar arguments are also
valid in cases �ii� and �iii� discussed above.

Case II. Another interesting case is when �A2, A3, and A5
nonzero�:

A2 = � −
2

h2 − A1,

A3 = � −
2

h2 − A1 + A4,

A5 = − � +
4

h2 + A1 − 2A4,

A6 = 0, �14�

with A1 and A4 being free parameters. It is clear that the
constraint of Eq. �2� is satisfied for any A1 and A4. Condi-
tions �8�–�10� reduce to

�2 =
− A1

2v2 ,

A5 =
A1 − �

T
. �15�

Thus we have a two-parameter set of moving kinks. The kink
solution exists for A1�0 and A4�2 /h2. In this case too the
kink velocity v can obtain any value.

As it was found in �19�, for

A1 = 4�1� ,

A2 = 6�2� ,

A3 = �1 − 4�1 − 8�2�� ,

A4 = A5 = 0,

A6 = 2�2� , �16�

with arbitrary �1 and �2, the model Eq. �1� has the Hamil-
tonian

H = �
n
� �̇n

2

2
+

��n − �n−1�2

2h2 +
�

4
−

�

2
�n

2 + �1�n
4

+ �2�n�n−1��n
2 + �n−1

2 � + �1

4
− �1 − 2�2��n

2�n−1
2 	 ,

�17�

and hence energy is conserved in this model. Simple analysis
of Eqs. �8�–�10� suggests that among the models supporting
the exact moving kink solutions there are no Hamiltonian
models.

C. Exact moving trigonometric solution and moving
four-periodic solution

Exact moving trigonometric solution. The discrete model
of Eq. �1� supports an exact moving solution of the form

�n = A sin�h��n + x0� − vt� , �18�

even when Ai, i=1, . . . ,6 are all nonzero provided

�h2 − 2 + 2 cos�h�� + v2 = A2h2 sin2�h���A3 − A4 + �3A6

− A5�cos�h��� , �19�

A1 + A4 + A3 cos�2h�� + �A2 + A5�cos�h�� + A6 cos�h��

��4 cos3�h�� − 3� = 0. �20�

From here, one can work out specific relations in the case of
various models. For example, consider the Hamiltonian
model with the parameters satisfying Eq. �16�. It is easy to
check that the moving sine solution exists in this model pro-
vided

�h2 − 2 + 2 cos�h�� + v2 = A2�h2 sin2�h���1 − 4�1 − 8�2

+ 6�2 cos�h��� , �21�

4�1 + �1 − 4�1 − 8�2�cos�2h�� + 8�2 cos3�h�� = 0.

�22�

Exact moving four-site periodic solution. For �h=	 /2 the
above moving trigonometric solution reduces to the moving
four-periodic solution of the form

�n = A sin�	

2
�n + x0� − vt	 , �23�

with

A1 + A4 = A3,

A2 =
�h2 − 2 + v2

A1h2 . �24�

For the Hamiltonian model, Eq. �24� reduces to
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�1 + �2 =
1

8
,

A2 =
�h2 − 2 + v2

4�1�h2 . �25�

Even in the Hamiltonian case the trigonometric solution can
have an arbitrarily large velocity.

D. Approximate moving kink solution

The discrete model of Eq. �1� with finite h can support the
solutions varying slowly with n �the same class of solutions
can be studied near the continuum limit, using h as a small
expansion parameter�. For such solutions one can use the
expansion ��h�
�+h�x+ �1 /2�h2�xx and substitute in Eq.
�1� �n=��0�, �n
1=��
h� to obtain

�tt = �xx + �� − ��3 −
1

2
h2B�2�xx − h2D��x

2, �26�

where

B = A2 + 2A3 + 2A4 + 3A5 + 3A6,

D = A3 − A4 − A5 + 3A6, �27�

and Eq. �2� was used. For B=D=0 Eq. �26� reduces to the
continuum �4 equation. This equation also stems from Eq.
�26� in the limit h→0.

Equation �26� supports the following kink solution:

��x,t� = tanh���x + x0 − vt�� , �28�

provided the following two conditions are satisfied:

�2 =
�

2�1 − v2� + h2D
,

B + D = 0. �29�

This is the quasicontinuum analog of the solution of Eq. �7�.
Let us analyze the case of �=1, which corresponds to the
double-well potential. For D=B=0 or/and h=0 we have the
classical continuum �4 kink with the propagation velocity
limited as �v��1. On the other hand, for nonzero D=−B and
nonzero h, there is no limitation on the kink propagation
velocity. In other words, fast kinks are possible in Eq. �26�
only in the presence of several competing nonlinear terms.
Note that in case B ,D�0, Eq. �26� is not Lorentz invariant.

For wide kinks, i.e., when ��h, one can use the kink
solution of Eq. �26� to write down the approximate solution
to the discrete model Eq. �1� of the form of Eq. �7�, whose
parameters are given by Eq. �29�. The corresponding wide,
fast kinks are possible in Eq. �1� only for finite h and only for
D=−B�0.

Substituting the Hamiltonian conditions of Eq. �16� into
Eq. �27� we find B=2D while, according to Eq. �29�, the
approximate moving kink solution exists at B=−D, i.e., it
exists only in non-Hamiltonian discrete models.

E. Spectrum of vacuum

The discrete model of Eq. �1� supports the vacuum solu-
tions �n= 
1. The spectrum of the small-amplitude waves
�phonons� of the form �n�t��exp�ikn
 it�, propagating in
the vacuum, is

2 = 2� + 2� 2

h2 − B�sin2� k

2
� , �30�

where k denotes wave number,  is frequency, and B is as
given by Eq. �27�.

Another vacuum solution, �n=0, supports the phonons
with the dispersion relation

2 = − � +
4

h2sin2� k

2
� , �31�

and this vacuum is stable for ��0.

F. Relation to TI models

Note that for v=0 the exact moving solutions Eqs. �3�,
�7�, and �18� reduce to the static TI solutions, i.e., solutions
which, due to the presence of arbitrary shift x0, can be placed
anywhere with respect to the lattice. TI solutions of Eq. �1�
were discussed in detail in �19�. Particularly, it was estab-
lished that any TI static solution can be obtained iteratively
from a two-point nonlinear map. Let us demonstrate that the
exact moving solutions �including JEF solutions� can also be
derived from a map.

Let us generalize the ansatz of Eq. �3� and look for mov-
ing solutions to Eq. �1� of the form

�n = AF��� ,

� = ��hn + hx0 − vt� , �32�

with constant amplitude A, where F is such a function that

d2�n

dt2 = − �2v2��0�n + �1�n
3� , �33�

with constant coefficients �0, �1. If this is the case, the sub-
stitution of Eq. �32� into Eq. �1� will result in a static prob-
lem essentially identical to the static form of Eq. �1�, namely,
in the problem

0 =
2

h2 ��n−1 − 2�n + �n+1� + 2�� + �0�2v2��n

− 2�A1 − �1�2v2��n
3 − A2�n

2��n−1 + �n+1�

− A3�n��n−1
2 + �n+1

2 � − 2A4�n−1�n�n+1

− A5�n−1�n+1��n−1 + �n+1� − A6��n−1
3 + �n+1

3 � . �34�

This effective separation of the spatial and temporal part
with each of them satisfying appropriate conditions is remi-
niscent of the method of �37�.

The Jacobi elliptic functions and some of their complexes
do possess this property. For example, Eq. �33� is valid for

�0 = 1 + m, �1 = −
2m

A2 for F = sn;
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�0 = 1 − 2m, �1 =
2m

A2 for F = cn;

�0 = m − 2, �1 =
2

A2 for F = dn;

�0 = 1 + m, �1 = −
2

A2 for F =
1

sn
;

�0 = 1 − 2m, �1 =
2�m − 1�

A2 for F =
1

cn
;

�0 = 2�2m − 1�, �1 = −
2

A2 for F =
sn dn

cn
. �35�

In the limit m=1 we get from the first line of Eq. �35�

�0 = 2, �1 = − 2 for F = tanh. �36�

A solution moving along the chain continuously passes
through all configurations between the on-site and the inter-
site ones. If one finds a static solution to Eq. �34� that exists
for any location with respect to the lattice, then one finds the
corresponding moving solution to Eq. �1�. Various static so-
lutions to Eq. �34� that have the desired property of transla-
tional invariance have been recently constructed. Let us dis-
cuss the two simple cases specified in Sec. II B.

Case I. For nonzero A1, A2, and A4=�−A1−A2, Eq. �1�
reduces to

d2�n

dt2 =
1

h2 ��n−1 − 2�n + �n+1� + ��n − A1�n
3

−
A2

2
�n

2��n+1 + �n−1� − A4�n−1�n�n+1, �37�

while from Eq. �34� we get

1

h2 ��n−1 − 2�n + �n+1� + �� + �0�2v2��n − �A1 − �1�2v2��n
3

−
A2

2
�n

2��n+1 + �n−1� − A4�n−1�n�n+1 = 0. �38�

Setting

A1 = �1�2v2,

�0 = − �1, �39�

we reduce Eq. �38� to the integrable static equation �17�

1

h2 ��n−1 − 2�n + �n+1� + P�n −
A2

2
�n

2��n+1 + �n−1�

− �P − A2��n−1�n�n+1 = 0, �40�

with

P = � − A1. �41�

Any static TI solution to Eq. �40� generates the correspond-
ing moving solution to Eq. �37�, provided that Eq. �33� is
satisfied.

All static solutions of Eq. �40� can be found from its first
integral �19�,

�n
2 + �n+1

2 −
Y�n

2�n+1
2

2 − Ph2 − 2Z�n�n+1 −
CY

2 − Ph2 = 0,

Z =
�2 − Ph2�2 − Ch4�P − A2�2

2�2 − Ph2� + Ch4A2�P − A2�
,

Y = h2�P − A2 + A2Z� , �42�

where C is the integration constant. The first integral can be
viewed as a nonlinear map from which a particular solution
can be found iteratively for an admissible initial value �0 and
for a chosen value of C.

Thus Eq. �42� is a general solution to Eq. �40�, while to
make it also a solution of Eq. �38� one needs to satisfy Eq.
�39�. This can be achieved by calculating d2�n /d�2 from the
map Eq. �42� and equalizing it to −�0�n+1−�1�n+1

3 accord-
ing to Eq. �33�. To calculate d2�n /d�2 we consider a static
solution centered at the lattice point with the number n
so that �n=0. From the map Eq. �42� one can find
�n+1�0�=CY / �2− Ph2�. We then consider the initial values
�n=−� and �n=� and similarly, from the map Eq. �42�, find
the corresponding values of �n+1�−�� and �n+1���. Finally,
we calculate the second derivative at the point n+1 as

d2�n/d�2 = lim
�2→0

��n+1�− �� − 2�n+1�0� + �n+1����/�2

= − �0�n+1 − �1�n+1
3 ,

where the values of the coefficients are

�0 =
CY2 − �2 − Ph2�2�Z2 − 1�

�2 − Ph2�CY
,

�1 = −
2

C
. �43�

Let us summarize our findings. From Eq. �43� and the second
expression of Eq. �39�, taking into account Eq. �41�, we find
the relation between the integration constant C and model
parameters A1, A2, �, and h when a moving solution is pos-
sible:

�1 − C�P�2 − Ph2�2�h4�C − 1�P3 + Ch4A2�5A2P − 4P2 − 2A2
2�

+ 4�2A2 − 3P − A2Ph2 + 2P2h2�� = 0. �44�

The solution profile is found for this C from Eq. �42� itera-
tively for an admissible initial value �0, and the propagation
velocity v is found from the first expression of Eq. �39� and
the second expression of Eq. �43�. Following this way, any
moving solution to Eq. �37� can be constructed �possibly,
except for some very special solutions that may arise from
factorized equations �19��. Note that in �17� we could express
many but not all the solutions of Eq. �40� in terms of JEF.
The approach developed in this section allows one to obtain
iteratively even those moving solutions whose corresponding
static problems were not solved in terms of JEF.
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The simplest case is C=1 when Eq. �44� is satisfied and
this case corresponds to the kink solution. From Eq. �43� we
find

�0 = 2,

�1 = − 2, �45�

which coincides with Eq. �36�. The map, Eq. �42�, in this
case reduces to


�2/h2� − A4

� − A1
��n − �n+1� − �n�n+1 + 1 = 0. �46�

One can check that Eq. �46� supports the static solution �n
=tanh�h��n+x0�� with

tanh2�h�� =
� − A1

2/h2 − A4
, �47�

and this coincides with the second expression of Eq. �12�.
The static solution Eq. �47�, that can also be found iteratively
from Eq. �46�, gives the profile of the moving kink that sat-
isfies Eq. �37�. The kink velocity v is found from Eqs. �39�
and �45� and this agrees with the first expression of Eq. �12�.

Case II. The model parameters are related by Eq. �14�
with A1 and A4 being free parameters. For A1=−2�2v2, Eq.
�34� reduces to

2

h2 ��n−1 − 2�n + �n+1� + 2�� − A1��n − A2�n
2��n−1 + �n+1�

− A3�n��n−1
2 + �n+1

2 � − 2A4�n−1�n�n+1

− A5�n−1�n+1��n−1 + �n+1� = 0, �48�

which is a particular form of the case �vii� static equation
studied in �19�. The first integral of the static model �vii� for
the general case is not known, but it is known for any par-
ticular JEF solution �19�. Let us further simplify the problem
considering only the kink solution of Eq. �48�, for which one
has

tanh2�h�� =
A1 − �

A5
. �49�

This relation coincides with the second expression of Eq.
�15�. From the known static tanh solution one can deduce the
following two-point map that generates this solution for any
initial value ��0��1:

�n+1 =
�n 
 �A1 − ��/A5

1 
 �n
�A1 − ��/A5

, �50�

where one can interchange �n and �n+1 and take either the
upper or the lower sign.

The static kink solution to Eq. �48� with � satisfying Eq.
�49�, that can also be found iteratively from Eq. �50�, gives
the profile of the moving kink that satisfies Eq. �1� with the
parameters related by Eq. �14�. The kink velocity v is found
from Eqs. �39� and �45�.

III. NUMERICS

Let us analyze the kink solutions for cases I and II de-
scribed in Sec. II B. Only the case of �=1 will be analyzed.
In our simulations we solve the set of equations of motion,
Eq. �1�, numerically with a sufficiently small time step �
using the Stormer integration scheme of order O��6�. Initial
conditions are set by utilizing Eq. �7� with various param-
eters. Antiperiodic or fixed boundary conditions are em-
ployed.

A. Exact moving kinks in case I

In this case, as it was already mentioned, the exact mov-
ing kink solution exists for the free model parameters satis-
fying A1�0 and A4�A1−�+2 /h2 �see Fig. 1 where for �
=h=1 we show the Isocontour lines of equal kink velocity
on the plane of model parameters A1, A4�. On the line A1
=0, according to the first expression of Eq. �12�, the kink
velocity v vanishes. On the line A4=A1−�+2 /h2 the kink
velocity also vanishes. This is so because, as it can be seen
from the second expression of Eq. �12�, on this line we have
T=1, i.e., �→� and kink width vanishes. On the line A4
=A1−�+2 /h2 we also have B=2 /h2, which corresponds to
vanishing of the width of the phonon spectrum given by Eq.
�30�. The vacuum �n= 
1 is stable, i.e., the spectrum Eq.
�30� does not have imaginary frequencies, if A4�A1+2 /h2,
i.e., it is stable in the whole region where the exact moving
kink solution is defined.

As it was already mentioned, the kink propagation veloc-
ity is unlimited and from Fig. 1 one can see that �A4� in-
creases for higher kink velocities while A1 can have any
negative value. For example, for v=10 the moving kink ex-
ists for A1�0 and A4�−221.9.

Let us now turn to the discussion of the stability of mov-
ing kinks.

Case of �=h=1 and v=10. Moving kink solutions are not
stable throughout the whole range of parameters of their ex-
istence; nevertheless for each studied value of propagation
velocity we were able to find a range of parameters where

FIG. 1. Isocontour lines of equal kink velocity on the plane of
model parameters A1 and A4 for case I at �=h=1, A2=�−A1−A4,
and A3=A5=A6=0.
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the moving kink is stable in the sense that even a perturbed
kink solution �with a reasonably large perturbation ampli-
tude� in course of time tends to the exact solution �i.e., it is
effectively “attractive”�. The evolution of the kink velocity in
such self-regulated kink dynamics is shown in Fig. 2 for a
velocity as large as v=10 for A1=−20 at �=h=1. For this
choice, we have from Eq. �12� �
0.316, A4
−222.1, and
A2
243.1. The moving kink profile is shown in the inset of
Fig. 2. The perturbation was introduced into the initial con-
ditions by setting in the exact solution of Eq. �7�, a “wrong”
propagation velocity, smaller or higher than the exact value
v=10. It can be seen that in the course of time the propaga-
tion velocity approaches the exact value regardless of the
sign of perturbation. The increase of kink velocity launched
with v=9.8 may look counterintuitive but one should keep in
mind that moving kinks are the solutions to a non-
Hamiltonian �open� system with the possibility to have en-
ergy exchange with the surroundings with gain or loss, de-
pending on the trajectories of particles �see, e.g., �10��.

We found that the absolutely stable, self-regulated motion
of kink, similar to that shown in Fig. 2, for v=10 and �=h
=1 takes place within the range of −164�A1�−1.1. The
inverse kink width at the lower edge of the stability window
is �
0.906, which corresponds to a rather sharp kink, while
for A1=−1.1 �the upper edge of the stability window� one has
�
0.0742 and the kink is much wider than the lattice spac-
ing h. For comparison, the kink shown in the inset of Fig. 2
has �
0.316. For A1�−164 the moving kink solution be-
comes unstable and displacements of particles behind the
kink grow rapidly with time resulting in the stopping of the
numerical run due to floating point overflow. For −1.1�A1
�0 kink dynamics is as described in Sec. 6 of �10� for the
non-Hamiltonian case. In this region of parameter A1, after a
transition period, the kink starts to excite in the vacuum in its
wake a wave with constant amplitude. In this regime, the
kink attains a constant velocity whose value is, generally
speaking, different from that prescribed by Eq. �12�. Kink
dynamics in the two unstable regimes described above will
be illustrated below for the kinks moving with v�1.

Case of �=h=1 and v�1. Similar results were obtained
for the kinks moving with small velocities �v�1�. For
smaller velocities the range of A1 with stable, self-regulated
motion becomes narrower. For instance, a kink with v=0.8 is
stable �in the above-mentioned sense� for −2.4�A1�−0.10,
while the one with v=0.5 for −0.19�A1�−0.06.

In Fig. 3 we show the time variation of the moving kink
profile to demonstrate the instability of the exact kink solu-
tion moving with v=0.8 at A1=−2.6. This solution is un-
stable and, due to the presence of rounding error perturba-
tion, the wave behind the kink is excited. The amplitude of
the wave rapidly grows with time and it becomes noticeable
in the scale of the figure at t�100. At t
130 the numerical
run stops due to the floating point overflow. Kink velocity is
nearly equal to v=0.8 practically until the collapse of the
wave behind it.

In Fig. 4 we show the kink velocity as a function of time
to illustrate the instability of the exact moving kink solution
at v=0.8 and A1=−0.07. This solution is unstable and, due to
the presence of rounding error perturbation, at t
400 it
starts to transform into an oscillating kink �with the period
T
5.01� moving with different velocity and exciting a
constant-amplitude wave behind it. The transformation is es-
sentially complete by t
5000 and the kink velocity becomes
v
0.96. The inset shows the profiles of an oscillating mov-
ing kink in the two configurations with the most deviation
from the average in time configuration.

Case of �=1, h=0.1, and v=10. Stable, self-regulated
motion of high-speed kinks was also observed for as small
lattice spacing as h=0.1. This may appear surprising at first
sight because for small h one would expect the discrete

FIG. 2. Kink velocity as a function of time for case I. The exact
kink velocity for chosen model parameters is v=10 but for setting
the initial conditions we put in Eq. �7� v=9.8 �dots� and v=10.2
�open circles�. In both cases, regardless of the sign of perturbation,
the kink velocity rapidly approaches the exact value. The inset
shows the moving kink profile. Model parameters: �=h=1, A1=
−20, A4
−222.1, A2=�−A1−A4, and A3=A5=A6=0. FIG. 3. Change of the moving kink profile demonstrating the

instability of the exact solution for the following set of model pa-
rameters: �=h=1, A1=−2.6, A4
−2.538, A2=�−A1−A4
6.138,
and A3=A5=A6=0. Exact kink parameters are v=0.8, �
1.425.
This solution is unstable and, due to the presence of rounding error
perturbation, the wave behind the kink is excited. The amplitude of
the wave rapidly grows with time and it becomes noticeable in the
scale of the figure at t�100. At t
130 the numerical run stops due
to the floating point overflow.
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model to be close to the continuum �4 model where propa-
gation with the velocity faster than v=1 is impossible; but
looking at Eq. �26�, one can notice that the two last non-
Lorentz-invariant terms have the coefficients h2B and h2D,
and they are not small even for small h if B and D are large.
The high-speed kink in the considered case indeed exists for
B
−19 833.1 and D
20 034.1. These values correspond to
the following parameters considered in this numerical run:
A1=−200.0, A4
−20 034.1, A2=�−A1−A4
20 235.1, A3
=A5=A6=0, and �=1.

B. Exact moving kinks in case II

In case II, the model parameters are related by Eq. �14�
and we find B=−2A4+6 /h2. As it was already mentioned,
the exact moving kink solution exists for A1�0 and A4
�2 /h2. Isocontour lines of equal kink velocity on the plane
of the free model parameters A1 and A4 can be seen in Fig. 5
for �=h=1. In case II, similarly to case I, on the borders of
the existence of the kink solution the kink velocity vanishes.
Moreover, on the border A4=2 /h2, both the width of the
phonon spectrum given by Eq. �30� and the kink width van-
ish, and this is also similar to what we saw in case I.

As was mentioned above, the exact moving kink solution
in case II can also have arbitrary velocity. Kink dynamics in
case II was observed to be qualitatively similar to that of
case I. For the kink with speed as large as v=10 for �=h
=1 we found that the absolutely stable self-regulated motion
is observed within the range of −82�A1�−1.0. The corre-
sponding inverse kink width varies in the range 0.640��
�0.0707. For A1�−82 the moving kink solution becomes
unstable and displacements of particles in the wake of the
kink grow rapidly with time resulting in the termination of
the numerical run due to floating point overflow. For −1.0
�A1�0, after a transition period, the kink starts to excite in
the vacuum behind itself a wave with constant amplitude. In

this regime, the kink propagates with a constant velocity
whose value is, generally speaking, different from that pre-
scribed by Eq. �15�.

C. Exact moving four-periodic solution

We have studied the dynamics of the exact moving four-
site periodic solution Eq. �23� in the Hamiltonian model, i.e.,
with the parameters satisfying Eq. �25�. Periodic boundary
conditions were employed for a chain of 40 particles. A small
perturbation was introduced in the amplitude of particles at
t=0 and we always observed a growth of deviation of the
perturbed solution away from the exact one. We varied the
free model parameter �1 and the solution parameter v in
wide ranges at �=h=1 but could not find a stable regime.

IV. CONCLUSIONS

For the discrete model of Eq. �1�, in Sec. II A we obtained
exact moving solutions in the form of the sn Jacobi elliptic
function. Solutions in the form of cn and dn Jacobi elliptic
functions can also be constructed as well as the solutions
having the form of 1/sn, 1/cn, and sn dn/cn in analogy with
�17�. In Sec. II B, from the sn solution, in the limit of m
→1, we extracted the exact moving kink solution in the form
of tanh, i.e., the corresponding hyperbolic function solution.

Setting v=0 in the exact moving solutions obtained in this
work one obtains the TI static solutions reported in �19�. In
this sense, the results reported here generalize our previous
results. We thus reveal the hidden connection between the
static TI solutions and the exact moving solutions. Such so-
lutions can be derived from a three-point map reducible to a
two-point map �see Sec. II F�, i.e., from an integrable map
�38�.

We have demonstrated that the exact moving solutions to
lattice and continuous equations with competing nonlinear
terms can have arbitarily large propagation velocity. Most of
the high-speed solutions reported in the present study are
solutions to the non-Hamiltonian variant of the considered
�4 models. However, the trigonometric solution described in

FIG. 4. Kink velocity as a function of time demonstrating the
instability of the exact moving kink solution for the following set of
model parameters: �=h=1, A1=−0.07, A4
−18.28, A2=�−A1

−A4
19.35, and A3=A5=A6=0. Exact kink parameters are v=0.8,
�
0.234. This solution is unstable and, due to the presence of
rounding error perturbation, at t
400 it starts to transform to an
oscillating moving kink �with the period T
5.01�. The transforma-
tion is essentially complete by t
5000. Inset: profiles of the oscil-
lating moving kink in the two configurations with the most devia-
tion from the average in time configuration.

FIG. 5. Isocontour lines of equal kink velocity on the plane of
model parameters A1 and A4 at �=h=1 for case II when model
parameters satisfy Eq. �14�.
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Sec. II C exists also in the Hamiltonian lattice and it also can
have an arbitrary speed.

While the problem of identifying traveling solutions in the
one-dimensional context by now has a considerable literature
associated with it, as evidenced above, identifying such so-
lutions in higher dimensional problems is to a large extent an
open question. While initial studies have demonstrated the
possibility in some of these systems for traveling in both on-
and off-lattice directions �39�, analytical results along the
lines discussed here are essentially absent in that problem
and could certainly assist in clarifying the potential of coher-

ent structures for unhindered propagation in these higher di-
mensional settings.
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